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Quantum Nonlocality From Synchronized Chaos

Gregory S. Duane1,2

Quantum entanglement suggests a deep synchronism in the physical world. The phe-
nomenon is compared to the synchronization of a pair of chaotic systems that are
loosely coupled (through only one of many degrees of freedom), so as to make infer-
ences about the possible form of a deterministic quantum theory. A Bell’s inequality is
constructed for a pair of synchronously coupled variable-order Generalized Rossler Sys-
tems (GRS), with arbitrarily binarized final states. The inequality is weakly violated,
despite the fact that system parameters cannot be inferred from the coupling signal.
Stronger violations, more closely resembling the quantum case, are to be expected if
the systems are generally synchronized with a non-identical correspondence function
that would give anticorrelation between the binarized states. The temporal behavior
of the high-dimensional chaotic systems that synchronize seems unrealistic unless the
variables are only spatially asymptotic descriptions of fast processes in a space–time
with micro-scale black holes or wormholes.
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1. INTRODUCTION

The Einstein–Podolsky–Rosen (EPR) phenomenon, with the conclusions that
follow from Bell’s theorem, suggests a deep synchronism in the physical world.
That particles in an EPR pair exist in correlated states seems to transcend, rather
than to contradict, notions of an underlying causal order. If one chooses to infer
nonlocality from the EPR correlations, in a noncontextual theory (e.g., Bohm,
1952), then one must explain why the nonlocal causation cannot be used to
send supraluminal signals. On the other hand, if one chooses a contextual, local
interpretation (e.g., Bohm and Hiley, 1981), in which the correlations are attributed
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to cosmic constraints on the observer’s choice of measurement direction, then one
posits a network of such relationships that far exceeds the predictions of existing
physical theory. In either kind of interpretation, one seeks to explain how spatially
separated physical processes might synchronize without exchanging information
in any usual way.

Synchronization of regular oscillators is surprisingly common in nature. Weak
signals between fireflies, between pendulum clocks on a common wall (Huygens,
1673), or between hormonal systems of cohabiting women, are known to be
effective in synchronizing the respective periodic oscillators. The scope of the
synchronization phenomenon was expanded greatly by the discovery that irregular
chaotic oscillators could also be made to synchronize, when coupled through
only a few of many dynamical variables. In this scenario, each oscillator may
be effectively unpredictable, as in the quantum case, but there is a predictable
relationship between oscillators. It has been suggested previously (Duane, 2001)
that chaos synchronization could form the basis of apparent quantum nonlocality,
if the unscrutability of the connecting “signal” in very high-dimensional systems
is taken to be sufficient to preclude supraluminal transmission of information
and violations of Lorentz invariance. With Bell (1964), we still take the weak
nonlocality implied by the violation of his inequality to be real.

It seems unlikely that chaos alone would be sufficient to explain quantum
unpredictability in a theory that is ultimately deterministic. Attempts to construct
models with the requisite properties encounter obstacles such as the “fat frac-
tal” property of basins of attraction (Ott and Sommerer, 1994), that would give
increasing predictability on smaller and smaller scales, an unrealistic feature.
Nevertheless, it is suggested that the synchronization phenomenon transcends the
framework of deterministic chaos, at least in the usual sense of chaos that is histori-
cally based on ODE paradigms. In this view, the synchronization phenomenon will
extend to deterministic systems that are even more wildly behaved. By attempting
to reproduce EPR-like phenomena using synchronized chaotic systems, one can
obtain clues as to the possible form of a deterministic, but highly unpredictable
substructure dynamics underlying the apparent indeterminacy of quantum theory,
a determinism that may be necessary after all (’t Hooft, 1999), despite the early
efforts of the Copenhagen school to avoid the issue.

Synchronized chaos is described in Section 2, with attention to the phe-
nomenon of generalized synchronization between qualitatively different systems.
In Section 3, we review previous work showing that a Bell’s inequality can be vio-
lated for synchronized chaotic systems without discernible transfer of information,
as for an EPR pair. In Section 4, we argue that generalized synchronization will
yield a Bell’s inequality violation more closely resembling the EPR violation. We
also argue that the class of systems that can synchronize may be less restricted in
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a space–time geometry with micro-scale black holes or wormholes. Conclusions
are briefly summarized in Section 5.

2. BACKGROUND: SYNCHRONIZED CHAOS

While synchronization of regular oscillators with limit cycle attractors is
ubiquitous in nature (Strogatz, 2003), the synchronization of chaotic oscillators
has become known only recently. The phenomenon was first brought to light by
Fujisaka and Yamada (1983) and independently by Afraimovich et al. (1987), but
extensive research on the subject in the 1990s was spurred by the seminal work of
Pecora and Carroll (1990), who considered configurations such as the following
combination of Lorenz systems:

Ẋ = σ (Y − X)

Ẏ = ρX − Y − XZ Ẏ1 = ρX − Y1 − XZ1 (1)

Ż = −βZ + XY Ż1 = −βZ1 + XY1

which synchronizes rapidly, slaving the Y1, Z1-subsystem to the master X, Y,Z-
subsystem. As explained by Pecora and Carroll, synchronization occurs despite
the sensitive dependence on initial conditions implied by positive Lyapunov
exponents, because the conditional Lyapunov exponents describing the Y1, Z1-
subsystem are negative.

Systems can also synchronize when coupled diffusively, as with a pair of
bidirectionally coupled Rossler systems:

Ẋ = −Y − Z + α(X1 − X) Ẋ1 = −Y1 − Z1 + α(X − X1)

Ẏ = X + aY Ẏ1 = X1 + aY1 (2)

Ż = b + Z(X − c) Ż1 = b + Z1(X1 − c)

where α parametrizes the coupling strength.
For a pair of coupled systems that are not identical, synchronization may

still occur, but the correspondence between the states of the two systems in the
synchronized regime is different from the identity. In this situation, known as
generalized synchronization, we have two different dynamical systems

ẋ = F (x) (3a)

ẏ = G(y) (3b)

with x ∈ RN and y ∈ RN . If the dynamics are modified so as to couple the systems:

ẋ = F̂ (x, y) (4a)
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ẏ = Ĝ(y, x) (4b)

the systems are said to be generally synchronized iff there is some locally in-
vertible function � : RN → RN such that ||�(x) − y|| → 0 as t → ∞. Identical
synchronization may be transformed to generalized synchronization simply by a
change of variables in one system, but not the other, i.e., a change in the description
of one of the systems (Rulkov et al., 1995). In this situation, the correspondence
function � is known a priori. Generalized synchronization may be difficult to
detect without prior knowledge of �.

Synchronization reduces the effective dimension of the phase space by half.
A synchronously coupled pair of identical systems moves on a hyperplane within
the full state space of the two systems. With generalized synchronization of non-
identical systems, the hyperplane becomes a synchronization manifold defined by
the correspondence function �. The N -dimensional manifold in 2N -dimensional
space is M ≡ {(p,�(p))|p ∈ RN }. The synchronization manifold is dynamically
invariant: If x(t) is a trajectory of a system such as (1) or (2), for x ∈ R2N , and
x(t1) ∈ M, then x(t2) ∈ M for all t2 > t1. That is, a perfectly synchronized system
remains synchronized.

It is commonly not the existence, but the stability of the synchronization
manifold that distinguishes coupled systems exhibiting synchronization from those
that do not (such as (2) for different values of α). N Lyapunov exponents can be
defined for perturbations in the N -dimensional space that is transverse to the
synchronization manifold M. If the largest of these, h⊥

max, is negative, then motion
in the synchronization manifold is stable against transverse perturbations. In that
case, the coupled systems will synchronize for some range of differing initial
conditions. As h⊥

max is increased through zero, the system undergoes a blowout
bifurcation. For small positive values of h⊥

max, on–off synchronization occurs
(a special case of on–off intermittency), as illustrated in Fig.1b.

Synchronization is surprisingly easy to arrange, occurring for a wide range of
coupling types. Synchronization degrades through on–off intermittency or through
generalized synchronization. Figure 1 depicts the two modes of degradation. In the
case of degradation by intermittency, vestiges of synchronization are discernible
even far from the blowout bifurcation point (Fig. 1c) (Duane, 1997). Generalized
synchronization is known to occur even when the systems are very different, as
in the case of a Lorenz system diffusively coupled to a Rossler system. The two
systems with attractors of different dimension are known to synchronize, but the
correspondence function is not smooth (Fig. 1f) (Pecora et al., 1997).

Detection of generalized synchronization between different systems, coupled
unidirectionally, with an unknown correspondence function is facilitated by the
auxiliary system method (Pyragas, 1996). An identical copy of the slave system
is constructed and coupled to the master system in the same manner as the first
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Fig. 1. Typical modes by which the synchronization between a pair of coupled systems can degrade,
illustrated by the relationship between a pair of corresponding variables x and x′: (a) complete,
identical synchronization, (b) intermittent synchronization, (c) highly intermittent, or “partial” syn-
chronization. Projection of the synchronization manifold onto the (x, x′) plane are shown for (d)
identical synchronization, (e) generalized synchronization with near-identical correspondence, (f)
generalized synchronization with a correspondence function that is not smooth.

slave.

ẋ = F (x) (5a)

ẏ1 = Ĝ(y1, x) ẏ2 = Ĝ(y2, x) (5b)

The original master–slave system is judged to be generally synchronized if
and only if the two slave systems are identically synchronized, that is, if and only if
||y1 − y2|| → 0 as t → ∞, for any choice of initial conditions x(t = 0), y1(t = 0),
and y2(t = 0). Generalized synchronization defined in this manner includes the
possibility of multi-valued (i.e., multi-branched) correspondence functions (So
et al., 2002).

The phenomenon of chaos synchronization is not restricted to low-
dimensional systems. The argument for the possible relevance of synchronized
chaos to quantum nonlocality, given in the next section, is based on the fact that
high-dimensional systems can synchronize when coupled through only a small
number of variables. It is known, for instance, that two N -dimensional General-
ized Rossler Systems (GRSs) (each equivalent to a Rossler system for N = 3) will
synchronize for any N , no matter how large, when coupled via only one of the N
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variables:

ẋA
1 = −xA

2 + αxA
1 + xB

1 − xA
1 ẋB

1 = −xB
2 + αxB

1 + xA
1 − xB

1
ẋA

i = xA
i−1 − xA

i+1 ẋB
i = xB

i−1 − xB
i+1 i = 2 . . . N − 1

ẋA
N = ε + βxA

N (xA
N−1 − d) ẋB

N = ε + βxB
N (xB

N−1 − d)
(6)

Each system has an attractor of dimension ≈ N − 1, for N greater than about 40,
and a large number of positive Lyapunov exponents that increases with N .

Early interest in synchronized chaos was based to a large degree on the
promise of an application to secure communications (Cuomo and Oppenheim,
1993; Cuomo et al., 1993). Security was based on the idea that a time series
in the one variable coupling the two systems would be difficult to distinguish
from noise, especially for high-dimensional systems such as (6) (e.g., Parlitz and
Kocarev, 1997). A signal composed of such a time series might be meaningful
only to a receiving system with parameters identical to those of the sending
system, or at least with a known correspondence function between states of the
two systems in the synchronized regime. The existence of synchronized chaos
in naturally occurring systems was made more plausible by demonstrations of
synchronization in spatially extended systems governed by PDEs in one space
dimension (Kocarev et al., 1997) and in 2D fluids (Duane and Tribbia, 2001).

3. EPR-LIKE PHENOMENA IN SYNCHRONIZED CHAOTIC SYSTEMS
AND VIOLATION OF AN ANALOGUE BELL’S INEQUALITY

That EPR correlations cannot possibly result from pre-assigned spin values
in an objective local theory follows from Bell’s theorem, specifically from the
violation of Bell’s famous inequality. To pursue the analogy between synchro-
nized chaos and quantum entanglement, we construct an analogous inequality for
bidirectionally coupled, synchronized Generalized Rossler Systems (6). The GRS
is chosen as a simple example of a dynamical system with tractable variable-order
behavior. (Higher dimensional PDE systems are often less suitable because they
have attractors of limited dimension.) No specific correspondence between GRS
dynamical variables and physical quantities is implied, but the system parameters
αA and αB are taken to be physical quantities of some sort, analogous to arbi-
trarily chosen measurement orientations. Each system is imagined to collapse to
one of two final states at measurement time T , depending on whether x1(T ) > 0
or x1(T ) ≤ 0. The dynamical variables xi at any given time, say t = 0, are the
“hidden variables” of the system. The configuration described by (6) is related
to one with unidirectional coupling that was proposed as the basis of a secure
communications scheme (Parlitz and Kocarev, 1997). If we take the two subsys-
tems to be spatially separated, the interaction is nonlocal (in the same sense as is
Newtonian gravity).
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Correlations can be defined as in the quantum-mechanical case, now as
functions of system parameters (say αA and αB) in place of the usual measurement
orientations:

P (αA, αB) ≡
∫

ρ(�)A(αA, αB,�)B(αB, αA,�)d� (7)

where now A and B are each ±1 depending on the state of the respective subsystem
at time t = T , � ≡ (xA

1 (0), xA
2 (0), . . . xA

N (0); xB
1 (0), xB

2 (0), . . . xB
N (0)) is shorthand

for the state of the entire system at t = 0, i.e., the hidden variables, and ρ is a dis-
tribution function for such initial states. It is required that

∫
ρ(�)d� = 1, but any

function ρ satisfying this normalization requirement will suffice. A conveniently
computed estimate of P is obtained by fixing the initial state �o and instead
varying the time T of the “collapse” to define AT and BT . Assuming ergodic-
ity: P (αA, αB ) ≈ 1

T2−T1

∫ T2

T1
AT (αA, αB,�o)BT (αB, αA,�o)dT since varying T

is equivalent to varying the time at which the initial state is defined.
It is assumed that the subsystems are synchronized or generally synchronized

(i.e., there is a one–one correspondence between states that is not the identity)
over the range of integration. If the final states A and B are only functions of
the corresponding α parameter, i.e., A = A(αA,�) and B = B(αB,�), then one
can establish an analogue Bell’s inequality. One introduces a third subsystem with
parameter αB ′

, that is also coupled to a subsystem identical to the A subsystem,
and considers the difference

P (αA, αB) − P (αA, αB ′
) =

∫
d�ρ(�)[A(αA,�)A(αB,�)

−A(αA,�)A(αB ′
,�)]

=
∫

d�ρ(�)A(αA,�)A(αB,�)

× [−A(αB,�)A(αB ′
,�) + 1] (8)

having used A = ±1, B = ±1, and having substituted B(αB,�) = A(αB,�). It
follows from (8) that

|P (αA, αB ) − P (αA, αB ′
)| ≤

∫
d�ρ(�)[1 − A(αB,�)A(αB ′

,�)] (9)

which is Bell’s inequality:

|P (αA, αB ) − P (αA, αB ′
)| ≤ 1 − P (αB, αB ′

) (10)

Noting that P (αB, αB ) = 1, one sees that the left hand side of (10) is in general
O(αB − αB ′

) whereas the right hand side of (10) is in general O[(αB − αB ′
)2]

if P is a smooth function, a contradiction. The inequality (10) is analogous to
Bell’s inequality in quantum theory, which differs from (10) only in the sign of
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Fig. 2. The Bell correlation P (αB, αB ′
) between the

final binarized states of the coupled GRSs (6), for
varying parameter αB ′

and fixed αB = 0.25. Cor-
relations are shown for a GRS of order N = 11
(solid line) and N = 101 (dashed line). The dis-
continuity in first derivative at αB = αB ′

required
by Bell’s inequality is evident in both cases. The
dotted line suggests the form of the correlations
for a pair of coupled systems that would resemble
a quantum-mechanical EPR pair. Correlations were
computed by numerical integration, using a Runge–
Kutta algorithm with adaptive stepsize control, over
intervals T2 − T1 = 105, with the other GRS param-
eters: ε = 0.1, b = 4, d = 2. The average computa-
tional error in the correlation values is 2 × 10−4.

the last term on the right hand side. The difference arises because spins in an EPR
pair are anticorrelated (P (α, α) = −1) instead of correlated, as with the GRS pair.
(In standard quantum theory P (a, b) is indeed the smooth function − cos(a − b),
where a and b are measurement orientation angles.)

The analogue Bell’s inequality (10) might be expected to fail since the config-
uration of GRSs includes an explicit coupling signal. However, a naive observer,
unable to extract the system parameters from the signal or to distinguish the signal
from background noise as N → ∞, would expect the inequality to hold. For a
configuration in which the signal is supraluminal, this observer would detect no
violation of causality and would claim that causality required that the analogue
Bell’s inequality be satisfied.

The correlations plotted in Fig. 2 exhibit the discontinuity in first deriva-
tive at identical parameter values αB = αB ′

which is characteristic of theories
that do satisfy Bell, unlike quantum systems. However, the full inequality (10),
involving all three parameter values, is violated when αA is far from αB = αB ′

.
The differences on the two sides of the inequality (10) both estimate derivatives,
which are plotted in Fig. 3 showing violations of the inequality for large parameter
differences. These violations imply that the states of the two systems, cannot, in
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Fig. 3. The LHS (solid line) and RHS (dashed line)
of Bell’s inequality (10), after division by αB − αB ′

,
for αB − αB ′ = .01, for coupled GRSs of order (a)
N = 11 and (b) N = 101. The quantities plotted for
varying αB and fixed αA = 0.25 estimate the par-
tial correlation derivatives |∂P (αA, αB )/∂αB |αA=.25

(solid line) and ∂P (αB, αB ′
)/∂αB ′|

αB ′=αB (dashed
line). Violations of Bell’s inequality are evident in
both panels for αB much smaller than αA = 0.25.
Correlations were computed as in Fig. 2, except
with a longer integration time T2 − T1 = 106 for the
dashed line in (a) only. The average computational
error is 0.05 for the solid line in (a), 0.002 for the
dashed line in (a), 0.05 for the solid line in (b), and
0.006 for the dashed line in (b).

general, be viewed as the result of joint initial conditions followed by separate
evolution—the analogue of the quantum EPR paradox.

That Bell’s inequality is satisfied for αA ≈ αB , as seen in Fig. 3, is not
surprising, since the coupling term linking the two systems, xA

1 − xB
1 , vanishes

in the case of identical synchronization with αA = αB . Unlike the quantum case,
the two systems can be regarded as separable when their parameter values are
identical. An explanation of the discontinuity in the first derivative of correlation,
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seen in Fig. 2, also requires that Bell’s inequality be satisfied in a neighborhood
of αA = αB , a circumstance that can be understood heuristically in terms of
the typical behavior of generally synchronized systems. When the parameters
of the two systems differ slightly, a synchronization manifold is defined by a
smooth invertible mapping, here φ : {xA

i } → {xB
i }, between the states of the two

systems. For such small differences, the mapping is typically given by a change of
dynamical variables in one system (Rulkov et al., 1995), which is in fact defined
on the synchronization manifold by φ itself. The two synchronized systems exhibit
precisely the same dynamics, described differently. With both systems belonging
to a family of systems that differ among themselves only by changes of variables,
let �̂ ≡ {x̂A

i (0), x̂B
i (0)} denote the initial state in some canonical set of dynamical

variables. Then, the final binarized state of each system depends only on the
particular binarization that defines A and B in terms of the x̂i , so we can write:

A = A(αA, �̂) B = B(αB, �̂) (11)

assume a fixed ρ(�̂), and prove the analogue Bell’s inequality (10). That the
inequality (10) is satisfied even for a restricted class of parameter values αA ≈
αB ≈ αB ′

still leads to a contradiction, as in the discussion following (10), unless
there is a discontinuity in the first derivative of correlation at identical parameter
values, which is seen in Fig. 2.

When the parameters differ widely, one can no longer define �̂ and write
(11). One must consider A = A(αA, αB,�), B = B(αA, αB,�), but a more ba-
sic issue is that �—which specifies the initial paired states—cannot be varied
independently of the dynamical parameters αA and αB , since the correspondence
between states in generalized synchronization varies with these parameters. In
general, one must write:

ρ = ρ(�,αA, αB) (12)

blocking the steps analogous to (8)–(9) in the proof of Bell’s inequality, which
depend on an independent ρ = ρ(�). The dependance of ρ on the dynamical
parameters is greater when the two systems begin to exhibit qualitatively different
dynamical behavior. Meyer et al. (1997) reported a change in dynamical behavior
around the value α = .07 where violations of Bell’s inequality are seen (Fig. 3).
The change is evident in Fig. 4 showing that the dimension of the attractor for
α = .07, for any order N , is lower than the dimension for the higher values of α.
Nevertheless, generalized synchronization between directionally coupled GRSs
with parameter values αA = .07 and αB = .25 was verified using the auxiliary
system method described in Section 2. It was inferred that the corresponding
bidirectionally coupled pair also synchronizes.

The violations of Bell’s inequality seen in Fig. 3 appear to persist as the order
N of the GRSs is increased. If the violation is quantified as the deviation from
unity of the ratio of the quantities represented by the solid and dashed lines, the
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Fig. 4. Lyapunov dimension D of the attractor of
a GRS of order N for varying N and different
values of the parameter α; α = 0.3 (∇), α = 0.25
(�), α = 0.15 (©), α = 0.07 (�). Other parame-
ters are as in Fig. 2. (re-created from Meyer et al.,
1997).

violation is seen to remain constant or to increase with order N . The argument
given above for the origin of the violations should apply regardless of order, since
Fig. 4 implies that the qualitative system dynamics change with shifting α in a
like manner for all N . However, as suggested by Takens’ theorem, the dynamical
parameters are increasingly well masked in the coupling signals (consisting of the
variables xA

1 ,xB
1 ) as N increases, for all parameter settings. Parlitz and Kocarev

(1997) explicitly showed that as N increases, one must consider an increasing
length of signal to distinguish the coupling signal from noise with the same power
spectrum. Thus, in the limit N → ∞, it is expected that violations of Bell’s
inequality remain, these violations regarded as a property of the formal system
(6), but the signals linking the subsystems are indistinguishable from noise.

4. IMPLICATIONS FOR THE FORM OF A DETERMINISTIC
QUANTUM THEORY

It is the principal thesis of this work that the universe is perpetually in a state of
generalized synchronization among its parts. In the usual situation, the correspon-
dence function that defines the synchronization is completely intractable, and the
connections that maintain the synchronization appear meaningless. However, in a
sufficiently symmetrical situation, such as that of an EPR pair, the correspondence
is simple.

The hidden relationships in the usual situation are one way of realizing
Bohm’s “implicate order” (Bohm, 1980). A second historical source for the pro-
posed use of synchronization is the Jung–Pauli concept of “synchronicity” (Jung
and Pauli, 1955). Jung and Pauli envisioned an “acausal connecting principle,”
existing alongside causality, as suggested by Fig. 5. To Pauli it was important
that synchronicities were meaningful, isolated events. Unfortunately, he kept his
speculations about synchronicity separate from his scientific work and expressed
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Fig. 5. Diagram constructed by Carl Jung, later modified by Wolfgang
Pauli, to suggest relationships based on synchronicity as an “acausal
connecting principle,” existing alongside causal relationships.

a concern that they might require science to abandon its attempt to describe nature
rationally. But if we allow bursting away from the synchonization manifold, as in
Fig. 1, so that synchronization obtains only in an average sense, then perhaps a
rational explanation for isolated synchronicities can be provided.

What then can be learned from the phenomenon of synchronization of loosely
coupled chaotic systems? The most obvious question is how to obtain violations
of Bell’s inequality that are qualitatively stronger, more like the quantum case. If
this question is linked to the question of how to get anticorrelated systems, then the
general form of the answer to both questions is apparent. In the GRS study, it was
seen that Bell’s inequality was not violated when the parameters of the two systems
are the same, since in that case the coupling signal vanishes, and the systems
evolve (assuming they are completely isolated) as would uncoupled systems that
are initially synchronized. With anticorrelating systems, on the other hand, the
coupling signal analogous to xB

1 − xA
1 does not generally vanish at the point

where parameters are equal and P is extremal, since the states of the two systems
are not the same there. Whatever dynamics gives a correspondence function that
results in anticorrelation between two systems with identical parameters cannot
be equivalent to the vanishing of the coupling signal. Of course, the dynamics
must have realistic symmetry properties under rotation and particle exchange.
But provided that the symmetry requirements can be satisfied and that generalized
synchronization gives anticorrelated states, stronger violations of Bell’s inequality
are to be expected.

A greater challenge is to find high-dimensional systems that are sufficiently
realistic and still synchronize when loosely coupled. The GRS has the properties
that its “metric entropy,” the sum of the positive Lyapunov exponents,

∑
hi>0 hi ,

is constant as N → ∞, and that its largest Lyapunov exponent hmax → 0 as
N → ∞. In other words, the higher the dimension, the less chaotic the system.
Such behavior is suspect in a system intended to represent unpredictable quantum
fluctuations. It is not known whether systems that are more chaotic than the GRS,
but with attractors of arbitrarily high dimension, can be made to synchronize with
loose coupling.
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From one vantage point, however, the GRS behavior may be physically rea-
sonable. Perhaps the GRS should be viewed as a spatially asymptotic description
of an intrinsically faster dynamics in a highly curved space–time. That is, if the
physical system that the GRS describes lives in the vicinity of a micro-black
hole or wormhole, the variables in the asymptotic description will be slowed, but
the actual physical processes will be realistically violent. The idea of Planck-
scale granularity in space–time is not new (e.g., Bombelli et al., 1987; Hawking,
1978) and is consistent with recent experimental evidence (Amelino-Camelia and
Piran, 2001). Foam has usually been conceived as arising from the quantization of
classical general relativity, but our scenario presupposes a foam-like structure at a
classical deterministic level, a structure that might arise from a generally covariant
but scale-dependent modification of Einstein’s equations to generate non-trivial
micro-scale behavior. Basing a deterministic quantum theory on such geometry
might allow uncomputability to enter, a desideratum that was put forth by Penrose
(1991), since the question of whether two foam geometries are topologically
equivalent is uncomputable.

The actual deterministic quantum theory should be expressible as a PDE on
space–time, on all but the smallest scales. Interestingly, synchronization has been
found in coupled pairs of 1D systems and 2D systems (i.e., two space dimensions)
but not thus far in 3D systems. It has been conjectured that for turbulent fluid
systems, the 2D synchronization results would not carry over to 3D because of the
different direction of energy cascade, from large to small scales, in 3D turbulence
(Duane and Tribbia, 2001). (The turbulent cascade was recently used to motivate a
deterministic quantum theory in another way by Palmer (2004).) If the PDE system
for the deterministic quantum theory must also be 2D to allow synchronization, this
constraint would be consistent with the holographic principle according to which
nature is fundamentally 2D on the Planck scale (’t Hooft 1993). It is tempting to
think of two such 2D PDE systems permanently synchronized by virtue of a sub-
Planck scale wormhole connecting them that is not traversable by matter because
of its width, with a GRS-like representation of each system at large distances, as
in Fig. 6. (Fast variables describing processes away from the hole could also be
added.) However, the wormhole may be no more than a metaphor for the nonlocal
sub-Planck scale physics.

Finally, we note that the individual particles in our scheme will have to
be rather complex, multi-parameter entities, in order for the signal from one
member of an EPR pair to be meaningful only to its partner. While multi-parameter
descriptions of individual particles would seem to conflict with field-theoretic
descriptions, the idea is consistent with older ideas as expressed by Bohm and
Hiley (1993).
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Fig. 6. Nonlocal connections as mediated by “wormholes,” of width less than the Planck
length LP, in a granular space–time. The “wormholes” are not traversable by material
particles but enable synchronization of spatially separated systems, with 2D dynamics at
the Planck scale, that are represented asymptotically by synchronizing GRS-like systems.

5. CONCLUSIONS

In summary, synchronism is a likely feature of any deterministic theory
of quantum phenomena. Since chaos synchronization is a well-researched phe-
nomenon, it can shed light on the necessary form of such a theory. The temporal
behavior of high-dimensional synchronizing systems, for which the nonlocal
coupling is disguised, appears to be unrealistic in a flat space–time. Thus,
small-scale space–time structure seems to be required. We have noted that this
conclusion is consistent with other evidence that space–time is granular on such
scales.

We have also supported the very notion of a deterministic quantum theory, in
a way that seems to agree with Pauli’s idea of synchronicity, Bohm’s “implicate or-
der,” Penrose’s requirement that a deterministic quantum theory be uncomputable,
and ’t Hooft’s ideas regarding determinism and holography. The next step is to
further consider foam-like space–time structures, introduced at a classical level,
that can be used in conjunction with synchronization.
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